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CHAFTEB I 

INTRODUCTION 

Current s t r u c t u r a l  design pract ice  c a l l s  f o r  decreasing s t ruc -  

t u r a l  thickness as a result of weight l imi ta t ions ;  as a consequence, 

many s t ruc tures  are permitted t o  buckle and a re  then used i n  the post-  

buckled state. Members t h a t  previously served only i n  a nonstructural  

capacity are used t o  sus t a in  loads greater  than those predicted i n  the 

usual "Euler  load" sense. I n  addition, s t ruc tures  subjected t o  these 

high s t a t i c  loads a r e  frequently expected t o  survive dynamic dis turb-  

ances. This i s  pa r t i cu la r ly  t rue  i n  a i r c r a f t  and space s t ruc tures  where 

the s t i f f n e s s  and dynamic charac te r i s t ics  of a buckled rectangular panel 

have become important with increasing f l i g h t  speeds. The buckling of 

the sk in  panels, whether caused by  a i r  loads or by thermal expansion, 

w i l l  cause a marked reduction i n  the s t i f f n e s s  of the s t ruc ture .  The 

- _ _  ~ 

changes i n  frequencies and mode shapes t h a t  take place as a r e s u l t  of 

thermal expansion a f f e c t  the various s t a t i c  and dynamic i n s t a b i l i t i e s  

considerably. The purpose of the present study i s  t o  determine the 

.. -- - - 

dynamic charac te r i s t ics ,  t h a t  i s ,  the na tura l  frequencies and mode 

shapes of vibrat ion of a rectangular p l a t e ,  i n  t e r m s  of a load para- 

meter both before and a f t e r  buckling. 

--_ __- 

The free vibrat ions of e l a s t i c  bodies o r  s t ruc tures  about 

the unbuckled equilibrium configuration have been studied extensively 

before. The na tura l  frequency and the mode shape of vibrat ion are ob- 

tained from the so lu t ion  of an eigenvalue problem. 

s t ruc tu re  i s  f i r s t  preloaded s t a t i c a l l y ,  then the r e su l t i ng  frequency 

If such a body o r  

of v ibra t ion  i s  increased by t e n s i l e  s t r e s ses  or forces  and decreased 

-I- 
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by compressive forces.  

zero when the  compressive force reaches the buckling load. 

In  the  case of compressive loading, it goes t o  

The most famil iar  example of such a problem is the lateral 

v ibra t ion  of a simply supported bar which i s  a x i a l l y  loaded. 

of t h e  frequency of t h e  v ibra t ion  is l i n e a r l y  re la ted  t o  the  axial 

force.  

of a clamped c i r cu la r  p l a t e  under uniform radial compressive forces.  

Massonnet(2) and L ~ r i e ( ~ )  have shown the  existence of an  intimate re- 

l a t ionsh ip  between normal vibrations and i n s t a b i l i t y .  

discussion can be found i n  t h e  book by Bolotin. (4 )  

t he  framework of l i n e a r  theor ies ,  whenever the mode shape of buckling 

and of v ibra t ion  i n  the  presence of axial load are the  same, t he  square 

of t h e  na tura l  frequency var ies  l i nea r ly  w i t h  increasing axial load 

u n t i l  it vanishes at t h e  corresponding buckling load. This property 

i s  of ten  used t o  predict  the  buckling load by extrapolat ion of a f e w  

po in ts  obtained experimentally at  r e l a t ive ly  l o w  loads on t h e  frequency 

squared-load curve. 

The square 

Willers(l) has calculated the decrease i n  the  na tura l  frequency 

A def in i t i ve  

In  general ,  within 

The buckling of a simply supported p l a t e  under edge compres- 

s ion was first studied by Bryan(5) i n  1891. 

p l a t e s  t ha t  are not simply supported have been invest igated extensively 

by Timoshenko. ( 6 )  

of l i n e a r  c l a s s i c a l  theory under the assumption that the  def lec t ion  of 

t h e  p l a t e  i s  small i n  comparison with i t s  thickness;  therefore  the  

solut ion appl ies  only t o  t h e  incipient s t a t e  of buckling. It i s  ob- 

vious tha t  the  l i nea r  theory of plates  no longer appl ies  when the be- 

havior of t he  p l a t e  above the  buckling load i s  t o  be investigated.  

The buckling loads f o r  

These problems are a l l  solved within t h e  framework 
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A s e t  of nonlinear d i f f e r e n t i a l  equations f o r  p l a t e s  w i t h  

l a rge  def lect ions was introduced i n  1910 by von K&rm&n.(7) Owing t o  

the  nonl inear i ty  of t he  equations, there  e x i s t  r e l a t i v e l y  few exact 

solut ions.  However, various approximate solut ions have been presented 

by Cox(8) and Timoshenko,(6) and a more accurate solut ion of the  

problem of la rge  def lect ions has been given by Marguerre.(g) By means 

of Fourier series Levy('*) has obtained an "exact" solut ion t o  the  

la rge  def lec t ion  equations of von d n  f o r  square p la tes .  

and Stoker (u'12) have used methods of per turbat ion,  power s e r i e s  and 

Friedrichs 

asymptotic expansions t o  solve,  i n  a very exhaustive manner, the  prob- 

l e m  of a simply supported c i r cu la r  p l a t e  subjected t o  r a d i a l  compressive 

loading. Alexeev, (I3) using a method of successive approximations, 

has obtained a solut ion f o r  the  square p l a t e  buckling i n t o  both one 

buckle and two buckles. Masur (I4) has u t i l i z e d  a stress f'unction space 

together  w i t h  a minimum energy pr inciple  t o  obtain a sequence of solu- 

t i o n s  w i t h  e r r o r  estimates f o r  the  post-buckling behavior of p la tes .  

With t h e  exception of t he  analysis of Alexeev,(13) a l l  of t he  above 

s tudies  of t he  post-buckling behavior of p l a t e s  a r e  concerned w i t h  

primary buckling. 

Secondary buckling has been observed through experiments, (15,16917) 

and i n  the  case of c i r cu la r  p l a t e s ,  t he  i n s t a b i l i t y  of the  primary buck- 

l i n g  mode has been pointed out by several  authors. (11914) 

SteintB1 ha$ used a perturba;tion technique t o  convert the  nonlinear l a rge  

def lec t ion  equations of von I 6 d n  in to  a s e t  of l i n e a r  equations and 

t o  invest igate  the post-buckling behavior of simply supported rectangu- 

Further,  

- -  

lar p l a t e s  by solving the  first few of t he  equations. H i s  inves t iga t ion  
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ind ica tes  possible changes i n  buckle pat tern;  t h e  same has a l so  been 

noted by Koiter. (19 )  

Bisplinghoff and Pian(20) have t r ea t ed  t h e  case of vibra- 

t i o n  of a thermally s t ressed rectangular p l a t e  which is  simply sup- 

ported and free t o  displace l a t e ra l ly .  

t he  case of a uniformly heated plate  with two opposite edges simply 

supported and with generalized support conditions on t h e  other  two 

edges. Both papers consider t he  small vibrat ions of t he  p l a t e  i n  

i t s  pre- and post-buckling states, t h e  analysis  of t h e  la t te r  being 

approximate. 

of a buckled c i r cu la r  p l a t e  by means of both perturbation techniques 

and power series expansions. Their analysis  i s  "exact" within the  

limits of c l a s s i ca l  plate theory,  small amplitude vibrat ion and i n  

t h e  sense of a converging series which has been truncated. 

Shulman(21) has considered 

Herzog and Masur(*') have t r e a t e d  t h e  case of v ibra t ion  

The present study i s  concerned with the  l inear ized vibrat ions 

of a rectangular p l a t e  r e l a t ive  t o  a s t a t i c  buckled configuration, and 

with t h e  i n s t a b i l i t y  of t he  buckling modes. Both the  s t a t i c  and 

dynamic equations of equilibrium are solved by per turbat ion techniques. 

If per turbat ion coeff ic ients  up t o  the  t h i r d  order are included, t h e  

results are acceptable f o r  a s ignif icant  range of t h e  loading parame- 

ter. For la rge  values of t h e  l a t t e r  t h e  frequency of v ibra t ion  of t h e  

p l a t e  is  obtained by means of t h e  Galerkin method while t he  s t a t i c  

problem is solved by a method similar t o  t h e  one due t o  Marguerre. 
\ 
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FORMULATION OF THE PROBLEM 

I n  what follows we consider the  xy plane t o  be the  middle 

plane of an e l a s t i c ,  i so t ropic  p l a t e  and z the  d i r ec t ion  of t h e  

l a t e r a l  def lect ion.  The p l a t e  is subjected t o  membrane forces  i n  t h e  

plane of t h e  p la te .  For the sake of convenience, t h e  index notat ion 

is  used f o r  t he  general discussion of the  problem, with Latin sub- 

s c r i p t s  i, j and k taking the  values of x and y ,  a repeated subscr ipt  

representing t h e  sum of a l l  allowable values of t h a t  subscr ipt ,  and 

a comma followed by a Latin subscript  denoting appropriate d i f f e r e n t i a -  

t ion .  

Let a p l a t e  of thickness h be subjected t o  prescribed edge 

t h r u s t s  ATi on B' and t o  displacements XUi on B", i n  which 

B = B' + B" forms t h e  boundary o f  t he  region R of t he  middle plane 

and h i s  a parameter assuming increasing pos i t ive  values. The mem- 

brane displacements and s t r e s ses  u i  and tij, respect ively,  may then 

be conveniently characterized by 

u i  = xu; + ui' 

In  Equations (2.1) t he  first terms on the  r i g h t  s ide correspond t o  the  

unbuckled s t a t e  and a re  governed by t h e  customary "generalized plane 

stress" equations 

0 0 0 0 
2 + v'k,k6ijl = tji 

1-v 
i n  R (2.2) 

-5- 
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on B' 

uo = vi on B" 

0 t n = T i  

i 

i j  j 
(2.3) 

i n  which E and v a re  Young's modulus and Poisson's r a t i o ,  respec- 

t i v e l y ,  t j i j  i s  the  Kronecker de l t a ,  and ni are the  components of 

t h e  u n i t  outer  normal. 

The second (primed) terms i n  Equations (2.1) represent t he  

changes induced by buckling and s a t i s f y  the  set of equations 

T '  = o  
i j  9 3  

Ti jn j  = 0 on B' 

u: = o  on B" 
1 

i n  which the  s t a t i c  def lec t ion  W satisfies t h e  addi t iona l  equation 

M A W  - h(Atyj + Ti j )W, i j  = 0 i n  R (2.6) 

and appropriate boundary conditions on B. I n  Equation (2.6) A stands 

f o r  t h e  Laplacian operator and D, the bending s t i f f n e s s ,  i s  given by 

Eh3 
U(1-9) 

D =  (2.7) 

The separation of t h e  solut ion i n t o  two pa r t s  i n  l i n e  w i t h  

Equation (2.1) has been found convenient because of the  l i n e a r  homo- 

genei ty  of Equations (2.4) and (2.5) i n  U; and T '  . T h a t  i s ,  f o r  

a given function W(x,y) these equations represent a boundary value 
i 3  

problem whose solut ion may be expressed symbolically by means of 

(2.5) 



-7- 

The operator so defined obeys appropriate superposit ion pr inc ip les ,  e.g., 

It i s  a l s o  noted t h a t  f o r  suf f ic ien t ly  s m a l l  values of A 

Equations (2.4), (2.5), and ( 2 . 6 )  admit only t r i v i a l l y  vanishing solu- 

(say, A 5 L o ) ,  

t ions .  For A > A, these represent unstable configurations. Other 

(i.e. buckled) configurations e x i s t  i n  t h a t  case,  although not a l l  of 

these may be s tab le .  

If a small vibrat ion w(x,y)eirot is  superimposed on W, then, 

after l i nea r i za t ion  with respect t o  w, t h e  governing equation of motion 

i s  

- h t '  W - hpw = O  
i j  , i J  ~ M w  - h(Atyj + T ; j ) W , i j  

i n  which 

P = @  

(2.10) 

(2.11) 

with p representing the  mass density. The dynamic membrane stress 

t '  (o r  r a the r  i t s  amplitude) is given symbolically by 
i j  

i f  in-plane i n e r t i a  is  ignored.* 

We consider now a rectangular,  simply supported p l a t e  covering 

< < t he  region 0 5 x = a, 0 = y 5 b. It is postulated that the  edges are 

made t o  approach one another by a specified amount and a r e  then held 

f ixed  during t h e  vibration. This seemingly ar t i f ic ia l  type of boundary 

* For t h e  case of shallow s h e l l s  t h i s  has been j u s t i f i e d  i n  Ref. 23. 
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. 

condition is  equivalent t o  fixing* the boundary while the p l a t e  is  

heated uniformly; t h i s  i s  considered t o  be a reasonably r e a l i s t i c  

representation of actual  conditions. 

The complete set o f  boundary conditions f o r  the  s t a t i c  case 

i s  therefore  as follows: 

uo(O,y) = vo(x,O) = 0; uo(a,y) = UE, vo(x,b) = VE 

vo (0 ,y)  = vox(a,y) = uo (x,O) = uo (x,b) = 0 
,x 9 9Y 9Y 

UE and VE are the  magnitude of t h e  displacements which are required 

t o  cause the p l a t e  t o  buckle i n  the l i nea r  sense; thus the value of X 

determines the  extent t o  which the  c r i t i c a l  deformation (or  temperature 

increase) has been exceeded. 

For the dynamic case the  boundary conditions are  

B l ( w )  E w(0,y) = w(a,y) = w(x,O) = w(x,b) = 0 (2.17) 

%(w) = 
u ' (0 ,y )  = u ' (a ,y)  = v'(x,O) = v'(x,b)  = 0 

W , & , Y )  = W,&,Y) = w,Yy (x ,O)  = ~ , ~ ( x , b )  = 0 (2.18) 

(2.19) 
v;x(o,y) = v;x(a,y) = u;y(x,o) = u;y(x,b) = 0 

i n  which u '  and v '  are the  dynamic displacement amplitudes of a 

point i n  the  x and y directions,  respectively.  

* Actually, f i x i t y  is  assumed only i n  the  normal d i rec t ion ,  while the 
p l a t e  is  f r ee  t o  s l i de  i n  the direction of t he  boundary. This type 
of shearless constraint  reduces the computational labor enormously, 
yet  i s  believed t o  introduce no s ignif icant  deviation from the com- 
putat ional ly  far more intractable  condition of f u l l  f i x i t y .  
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THE PERTURBATION SOLUTION 

I n  t h i s  chapter we obtain a solut ion t o  both the  s t a t i c  and 

dynamic problem through a perturbation expansion. 

method is operative only within a limited range of the  perturbation 

parameter; f o r  la rge  values the  ser ies  converges too  slowly t o  be 

handled without excessive labor.  

t a ined  appear t o  be acceptable up t o  a value of at  l e a s t  t e n  of t he  

post-buckling parameter A. 

work by Ste in ,  (18) but  has had t o  be rederived i n  order t o  make the 

dynamic port ion comprehensible. 

As usual t h i s  

I n  t he  present case t h e  results ob- 

The s t a t i c  portion i s  similar t o  previous 

We consider first the  s t a t i c  case. It is required t o  solve 

Equation (2.6),  i n  which t 9  and uy s a t i s f y  Equations(2.2) and 

T i J ,  U; 

conditions Equations (2.13 ) , (2.14), (2.15) and (2.16) . 

I J  
and W satisfy Equations (2.4), with the  associated boundary 

Equations (2.2) and (2.15) represent t he  usual problem of 

plane e l a s t i c i t y ,  whose well-known solut ion f o r  a rectangular p l a t e  is  

where UE and VE are found l a t e r  on. 

We now assume the  functions W and X t o  be expandable i n  

a power s e r i e s  i n  terms of an a rb i t r a ry  parameter E i n  the  neighbor- 

hood of the  point of buckling E = 0,  t h a t  is ,  with W E  W ( X , Y , E ) ,  

w = E W ( 1 )  + E 3 W ( 3 )  + ,%(5) + . . . 
A = A. + E*$ + E 4 A 4  + .... 

-9 - 
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Here W (n)* are functions of x,y only and E, t h e  perturbation 

parameter, w i l l  be assumed t o  be monotonely increasing as buckling 

progresses. The f a c t  t h a t  W is  odd and X i s  even i n  e may be 

easily ve r i f i ed  upon subs t i tu t ion  i n  t h e  relevant equations. 

t h e  sake of brevi ty  these s teps  are omitted here. 

For 

Since a t  t h e  

point of buckling, 

fo r  t h e  ,Puler buckling load. 

E = 0, Xo is  ident i f ied  as t h e  load parameter 

I n  view of Equations (2.8) and (2.9) 

Tij can be expressed i n  terms o f  the a r b i t r a r y  parameter E as 

follows : 

00 . .  
T' = 1 E P Tij (PI 

p=l  
(3 .4)  

i n  which 

The membrane stress equilibrium equations can be wri t ten i n  terms of 

t h e  addi t iona l  displacements as 

1-v - -  l+v =-w w - -  1-v l+v 
? Y  ,yY 2 w?xw?xY 2 w,Yw,xx v;= + - u;= vim 2 2 

+ -  

In  view of t h i s  t h e  addi t ional  displacements U' and V' can a l s o  be 

expanded i n  a power series of t he  same arbitrary parameter E, and the  

series i s  expected t o  start with the second power of E and t o  contain 

' Superscripts i n  parentheses are intended t o  iden t i fy  the  var iable  and 
not t o  a c t  as an exponent. Whenever possible ,  however, parentheses 
w i l l  be omitted where there  i s  no possible confusion and w i l l  be in- 
cluded only i f  necessary. 
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only even expansions. Thus, 

U ' = E U  (2) + E 4 d 4 )  + .... 
V' = .2v(2) + E4V(4) + .... 

When these expansions are subs t i tu ted  i n  Equation (2.6) and 

other  relevant equations, t he  requirement that each coef f ic ien t  i n  t h e  

power series vanish individually leads t o  a set of l i n e a r  d i f f e r e n t i a l  

equations with associated boundary conditions. These equations can be 

solved i n  sequence. 

For c1 t h e  d i f f e ren t i a l  equation is  

1 1 0 1  L1(W ) S  D M W  - hXotijW,ij = 0 (3.9) 

and t h e  boundary conditions a re  

Bl(W1) = 0 (3.10) 

q($) = o  (3.11) 

This i s  the  l i n e a r  eigenvalue problem f o r  t h e  buckling of a rectangular 

p l a t e  subject t o  edge compressions or displacements. It i s  now assumed 

t h a t  t h e  edge displacements a re  such as t o  induce a hydrostat ic  plane 

stress,* t h a t  i s ,  

0 tij  = - "j 

There e x i s t  an i n f i n i t e  

(3.12) 

number of eigenvalues and eigenfunctions. The 

normalized def lect ion function 

W1 = h s i n  mz s i n  nlry - 
a b 

(3.13) 

* 
This corresponds t o  the  case of uniform heat ing of a thermally 
i so t ropic  plate .  
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i n  which m and n are in tegers ,  automatically s a t i s f i e s  the  boundary 

conditions. This f i x e s  the  physical meaning of E as representing 

t h e  amplitude of t he  f i rs t  term i n  the perturbation expansion. The 

associated eigenvalue takes the  f a m i l i a r  form 

Any combination of m and n i n  the above expression can be iden t i f i ed  

as an eigenvalue of t he  d i f f e r e n t i a l  equation. 

l i n g  mode is of i n t e r e s t ,  the  lowest eigenvalue associated with the  

first buckling mode i s  obtained by choosing 

the  aspect r a t i o  a of t h e  p la te .  

If only the  first buck- 

m = n = 1 regardless of 

6 
 or 2 t he  d i f f e r e n t i a l  equation i s  

i n  which 

with W1 given by Equation (3.13). 

The associated boundary conditions are 

B1($) = 0 

+(w3) = 0 

The d i f f e r e n t i a l  Equation (3.15) here is  nonhomogeneous, but 

t h e  associated homogeneous equation i s  iden t i ca l  with Equation (3.9). 

This homogeneous system has the  nont r iv ia l  so lu t ion  W'. The nonhomo- 

geneous d i f f e r e n t i a l  equation therefore  has a solut ion if and only i f  

t he  r i g h t  hand s ide  of Qua t ion  (3.15) is  orthogonal t o  +.(24) When 

Equation (3.9) is  multiplied by W3 and Equation (3.15) by W1, a f t e r  
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in tegra t ion  by pa r t s  and i n  view of the boundary conditions,  t h i s  

orthogonality condition becomes 

Furthermore, t he  solut ion is  not unique. 

added t o  a pa r t i cu la r  solut ion is  a l s o  a solut ion of t he  d i f f e r e n t i a l  

Equation (3.15). Let 9 be a par t icu lar  solution. Then 3 is, i n  

general ,  given by 

Any a r b i t r a r y  multiple of W1 

(3 .20)  

The choice of t h e  value of a3 i s  a rb i t ra ry .  For convenience of compu- 

t a t i o n  l e t  

then 

This i s  always possible ,  s ince i n  t h e  present case 

(3.21) 

(3.23) 

+ 
L e t  the  vector T denote any s t r e s s  f i e l d  T i j  symbolically, 

and l e t  t h e  inner product of two vectors ?? and ??@ be defined by 

(3.24) 

i n  which @ is t h e  s t r a i n  associated with t h e  s t r e s s  !I? . In  view 

of t he  pos i t ive  def ini teness  of the  s t r a i n  energy and of t he  symmetry 

of t he  s t r e s s - s t r a in  coef f ic ien ts ,  it follows t h a t  ?pr is pos i t i ve  

d e f i n i t e  and t h a t  - =?@ - . 

13  i 3  
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By Equation (3.16)9 through the  appl icat ion of Green's 

theorem, and i n  view of the  boundary conditions,  it can be shown 

t h a t  

?l = 1 h 1 TijW,iW, 1 1 1  jdA 2 

Likewise we define 

Equation (3.19) can be w r i t t e n  

(3.25) 

(3.26) 

Since, f o r  pos i t ive  

? 
confirms the  well-known fac t  t h a t  the load parameter increases with 

increasing buckling amplitudes near t h e  buckling point; the  la t ter  

therefore  represents a point of s table  equilibrium. 

A, !!$ - @ i s  negative, [see (3.23)],  and s ince 

i s  pos i t ive  d e f i n i t e ,  + is always posi t ive.  This, i n  t u r n ,  

For e5 t he  governing d i f f e r e n t i a l  equation i s  

i n  which 

with associated boundary conditions 

B1(W5) = 0 

B , ( w ~ )  = o 

(3.28) 

A s  before,  the  r igh t  hand s ide of Equation (3.28) must s a t i s f y  the  

orthogonality condition if  the equations has a solut ion f o r  W5. Thus, 

1 $ j < i ,  W1,dA + $ TijW 4 1 1  iW jdA 
Ah = - 
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Let ’is5 be a pa r t i cu la r  solution of Equation (3.28), then 

w5 = 3 + a5w1 

L e t ,  f o r  convenience, 

from which 

(3.33) 

(3.34) 

In  terms of the  inner product notation, Equation (3.32) reduces t o  

334 * F 
2- 

A4 = - (3.36) 

i n  which Equation (3.29) has been u t i l i zed .  Since ? can be 

e i t h e r  posi t ive o r  negative, no conclusion can be drawn r e l a t i v e  t o  

the  s ign of the  value of 14 . 
The equations which contain higher powers of E can be solved 

i n  the same manner; however, t h e  calculations become exceedingly cum- 

bersome. For the range of values considered here no f’urther expansion 

has been found necessary. 

W e  now consider the vibratory motion of t he  plate .  It i s  noted 

t h a t  t he  metkiod of solut ion i n  the dynamic case i s  similar t o  the  one 

used above and hence only the essential points are presented. 

The equation governing the motion of the  p l a t e  i s  Equation 

(2.10). For the  sake of convenience, i t  i s  ;resel:ted ,gcin: 

- h t ’  W - phw = 0 (2.10) 
i j  , i j  

D M W  - h(Atyj + T i j )  w , ~ ~  

with 

(2.12) 
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subject  t o  the boundary conditions 

Bl(W) = 0 

B2(w)  = 0 

(2.17) 

(2.18) 

Here, A, t y j ,  T i j  and W are now assumed t o  be known. The d i f f e r e n t i a l  

equations and t h e  boundary conditions are l i n e a r l y  homogeneous i n  w, 

and once again we have an eigenvalue problem i n  which 

eigexmahe. For each eigenvalue pqv, t he re  exists an eigenf’unction 

w(x,y) P9 

boundary conditions. The prescr ipts  p,q denote t h e  pqth m o d e  of 

vibrat ion.  

p represents  t h e  

which satisfies t h e  d i f f e r e n t i a l  equation as w e l l  as t h e  

We assume that the  eigenfunction pqw and t h e  associated 

eigenvalue ,,u can be e-qm2ed i n  e p w s r  series i n  terms of the same 

parameter E as i n  the  s t a t i c  case, t h a t  is ,  

Yrl 

(3.37) 

The f a c t  t h a t  pqw and pqp are even expansions i n  E may be e a s i l y  

ve r i f i ed  upon subs t i tu t ion  i n  t h e  relevant equations. For t h e  sake of 

brev i ty  these s teps  are omitted here. In  view of Equation (2.12) 

can be expressed as 

t(l) + €3 pqtij (3) + € 5  pqtij ( 5 )  + .... 
pqti j  = €pq i j  

with 

(3.39) 
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Upon subs t i tu t ion  of these perturbation expansions i n  Equation (2.10) 

a new sequence of d i f f e r e n t i a l  equations is  obtained whose solut ion 

follows procedures analogous t o  t h o s e  presented f o r  the s t a t i c  case. 

From here on the prescr ipts  p,q w i l l  be omitted, it being 

understood t h a t  w ( ~ ) ,  ~ ( ~ 1  and tin) denote t h e  nth perturbation 

coef f ic ien ts  of t h e  def lect ion,  frequency squared and membrane stresses 

f inc t ions ,  respect ively,  f o r  t h e  pqtk mode of vibrat ion of t h e  p la te .  

Whenever there i s  a poss ib i l i t y  of confusion, o r  a spec i f ic  mode of  

vibrat ion i s  referred t o ,  the prescr ipts  w i l l  be added. 

3 

For E O  t he  d i f f e r e n t i a l  equation i s  

w i t h  t he  associated boundary conditions 

This i s  s a t i s f i e d  by the  normalized* f inc t ion  

wo = s i n  '9 s i n  - qfiY 
b 

i n  which p and q a re  integers ,  provided t h a t  

a* 

The membrane s t r e s ses  t1 can now be obtained from 
13 

(3.41) 

(3.42) 

(3.43) 

(3.44) 

(3 45) 

* 
Naturally the l inear ized vibration solut ion i s  subject  t o  an 
a rb i t r a ry  amplitude factor .  
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For e2 t h e  d i f f e r e n t i a l  equation i s  

and t h e  boundary conditions are 

B l ( 2 )  = 0 

B2($) = o  

As before,  the  right hand s ide of Equation (3 .46)  must satisfy a n  

orthogonality condition* i f  a solution i s  t o  e x i s t .  After some manipu- 

l a t i o n  t h i s  leads t o  

The solut ion of t h e  d i f f e r e n t i a l  Equation (3 .46 )  is  not unique; any 

multiple of w0 

of t he  d i f f e r e n t i a l  equation. 

added t o  the  par t icu lar  solut ion is  a l s o  a solut ion 

For the  sake of convenience we l e t  

'Thus, i s  determined and t3 can now be obtained from 
i j  

4 For E 

L,(W~) = 

+ 

the  d i f f e r e n t i a l  equation i s  

htijW,ij 3 1  + h t i j f i j  + p%w0 + p2h$ 
(3 - 52) 

Note that t h i s  orthogonality condition is  d i f f e ren t  from the one 
per ta ining t o  the  static case. 

* 
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and t h e  associated boundary conditions are 

(3.53) 

(3 - 54) 

Again, t h e  orthogonality condition determines t h e  value of 

h ( w O ) ~ ~ A  
(3.55) 

while t he  def lect ion function w4 s a t i s f i e s  

(3.56) 4 J w WOdA = 0 

Since the  s t a t i c  deflection i s  truncated at  t h e  coef f ic ien t  

W5, the re  i s  no sense i n  pursuing the so lu t ion  of t h e  dynamic problem 

beyond t h i s  point. 

The r e s u l t s  of these calculationsare given i n  Appendix A f o r  

t h e  general case of a rectangular plate .  The first pa r t  deals  with t h e  

s t a t i c  problem. Algebraic expressions a re  given f o r  t he  expansion terms 

i n  the  def lect ion W(x,y), the  additional stresses T '  (x ,y) ,  t h e  load 

parameter 1, and the  addi t ional  membrane displacements U'(x,y) and 
i j  

V'(x,y). These are not necessarily based on the  assumption t h a t  t h e  

p l a t e  buckles f r e e l y  immediately a f t e r  i t s  unbuckled equilibrium con- 

f igura t ion  becomes unstable; however, t h e  case of m = n = 1 is t h e  only 

one which has p rac t i ca l  significance.  

The dynamic response f o r  t h e  same case is  computed next. 

Again general a lgebraic  expressions are given f o r  t h e  vibrat ion modes, 

membrane stresses, and frequency parameters. Only t h e  lowest two modes 

p = 1, q = 1 and p = 2, q = 1 a r e  considered; an obvious, and t r i v i a l ,  
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extension is e a s i l y  obtained fo r  p = 1, q = 2 through a su i t ab le  

exchange of variables.  

Higher bucklingemodes (say, m = 2, n = 1) are of course 

associated with l a rge r  c r i t i c a l  buckling parameters; however, as t h e  

lowest buckling parameter A, is exceeded, at  least one frequency 

becomes imaginary and the  associated unbuckled equilibrium configura- 

t i o n  becomes unstable and hence physically meaningless. Nevertheless 

it is conceivable tha t  i f  t he  p la te  were forced in to  one of these 

higher buckling m o d e s  (perhaps through the appl icat ion of kinematic 

cons t ra in ts ) ,  i t s  equilibrium may again become s t ab le  f o r  s u f f i c i e n t l y  

la rge  buckling amplitude. 

such a condition is  t h a t  the  square of the  smallest frequency of vibra- 

t i o n  becomes again posi t ive.  

A necessary and su f f i c i en t  c r i t e r i o n  fo r  

This may be physically s ignif icant .  A s  has been observed 

and commented on repeatedly, buckled p l a t e s  of ten snap from t h e i r  

o r ig ina l  buckling configuration in to  another one. 

of "secondary buckling" takes place is  conjectural  and has been t h e  

object o f  some speculation; f o r  example it has been postulated t h a t  a 

su i tab le  c r i t e r i o n  i s  obtained when the energies i n  the primary and 

secondary states are equated.(25) 

a snap-through from a s t ab le  configuration in to  an unstable one can be 

ruled out. 

r a t ion  becomes s tab le  may therefore  be considered a lower bound t o  the  

secondary buckling parameter. 

Jus t  when t h i s  type 

I n  any event it i s  safe  t o  state t h a t  

The lowest loading parameter at which the  secondary configu- 

Charts showing the  frequencies of vibrat ion f o r  spec i f ic  cases 

are given i n  t h e  present paper for several  such higher buckling modes, 
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and i n  Appendix A a r e  included the  general a lgebraic  expressions f o r  

t h e  v ibra t ion  modes, membrane s t resses  and frequency parameters of t h e  

lowest two modes p = 1, q = 1 and p = 2, q = 1 if  the  p l a t e  has 

buckled i n t o  the  second mode m = 2, n =l .  

pressions of po and p2 are given f o r  any v ibra t ion  mode and f o r  any 

buckling mode. These expressions are general ly  r a the r  complex and have 

therefore  been deleted from the  main  body of t h e  paper. 

The general a lgebraic  ex- 

For the  spec ia l  (and, near t he  buckling point ,  most important) 

condition of m = n = p = q = 1, the formulas become much simpler. 

Since, f o r  that case, wO = W1, it follows from Equation (3.40) t h a t  

po = 0 (3.57) 

as expected, wiiicii in t - in  hsltc!s thzt 31 = 2 2  nc~! w2 = 3k3. When 

these r e l a t ions  are subs t i tu ted  i n  Equations (3.49) and ( 3 . 5 5 ) ,  it 

follows, a f t e r  some manipulation, that 

For the  rate of change of frequency of v ibra t ion  with respect 

t o  the  load parameter i n  the  neighborhood of buckling ( E  = 0) one obtains 

For the  vibrat ion mode p = q = 1, ~ ( ~ 1  i s  pos i t ive  and so i s  the  value 

of 8 a t  the  point of buckling, as an t ic ipa ted  since the  p l a t e  is  s t ab le  

i n  t h e  immediate post-buckling neighborhood. A s imi la r ,  though l e s s  im-  

por tan t ,  conclusion i s  reached f o r  any v ibra t ion  mode sa t i s fy ing  p a ,  q=n. 
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CHAPPER Iv 

THE ENERGY METHOD SOLUTION 

In  the perturbation method, the  r ap id i ty  of convergence of 

t he  perturbation s e r i e s  is  always an issue.  I n  some problems t h e  

series converges f a i r l y  rapidly,  i n  o thers  it converges only  f o r  a 

rather small range of values of the load parameter X. An indicat ion 

(though not fully conclusive) of the convergence of the per turbat ion 

serieg i s  the  agreement between the results obtained from the  trunca- 

t i o n  at the term and en-'. The present calculat ions show Satis- 

fac tory  convergence f o r  a technical ly  s ign i f i can t  range of the load 

parameter. 

as expected, when the buckling mpl.itx2es reach very ia rge  values. 

To cover this range a t  least approximately an energy method is employed 

i n  t h i s  chapter. 

Nevertheless t he  truncated expressions become unre l iab le ,  

The s t a t i c  condition is analyzed by a method similar to the  

one of Marguerre-Papkovitch.(g) The def lec t ion  of the p l a t e  is assumed 

t o  be expressed by means of' 

w = c,wl + + (4.1) 

i n  which W1, W2 and $ are geometrically admissible functions and 

C1, C2 and C3 are parameters whose values are t o  be determined from 

the theorem of minimum potent ia l  energy. With t h i s  assumed def lec t ion  

f'unction, the  addi t iona l  membrane s t resses  T '  can be obtained from 

Equation (2.8), t ha t  is ,  
i d  

-22 - 



-23 - 

The addi t ional  po ten t ia l  energy V, that is t h e  difference 

i n  the  po ten t i a l  energies of t h e  buckled and unbuckled states, i s  de- 

fined by 

After  appl icat ion of Green's theorem, membrane s t r e s s  equilibrium 

equations (T' U , J  
energy is  now given by 

= 0) and boundary conditions, t he  membrane  s t r a i n  

( 4.4) b = q $ T ' W  h W dA 
i j  ,i 9 3  

If t h e  edges of the  p l a t e  are simply supported, t he  bending s t r a i n  

energy l$, reduces t o  
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Since t y j  = - Bij , We becomes 

Upon subs t i tu t ion  of Equations (4.1) and (4.2) i n t o  Equation (4.3) we 

have 

i n  which* 

11 h 1 1  
e 2  ? I  

w = - I  w iw idA 

Se t t ing  the  first var ia t ion  of t h e  poten t ia l  energy equal t o  zero leads 

Terms such as 
a r e  chosen t o  be orthogonal functions, these terms vanish from the  
above express ion. 

WF etc .  may also appear; however, i f  W ( n )  * 
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k. 

C1, C2 and C3 can be solved i n  terms of the load parameter X from 

Equations (4.8). 

The def lect ion functions of the lowest buckling m o d e  can be 

assumed t o  be of the following form 

~1 = s i n  5 x s i n  n y 
a 5 

~2 = s i n  3 x x s i n  x y 
a 6 

3 n  
by ~3 = s i n  4 x s i n  a 

(4.9) - 
* 



This assumption 

as predicted i n  

is  not without jus t i f ica t ion .  W1 is the  buckling mode 

the l i n e a r  theory. The formation of a @ wave along 

t h e  unloaded edges and i n  the  direct ion of t h e  loads has been observed 

experimentally i n  the  buckling of a simply supported p l a t e  subjected t o  

longi tudinal  edge compressions. It i s  therefore  reasonable t o  include 

both b? and d f'unctions i n  the present problem. Note t h a t  d i s  

a l s o  t h e  first term of t h e  perturbation series f o r  W and ($ + d )  
i s  t h e  second term of t h e  perturbation series f o r  a square plate .  

An exact solut ion t o  the dynamic problem i s  generally out of 

t h e  question, i n  sp i t e  of i t s  l i n e a r i t y ,  because of t h e  presence of 

functions of x and y as coeff ic ients  i n  t h e  relevant d i f f e r e n t i a l  

equations. For t h i s  type of problem t h e  Galerkin method (which, f o r  

conversative systems of t he  present kinds, represents e s sen t i a l ly  a 

modified energy method) yields comparatively good approximations which 

are known t o  cons t i tu te  upper bounds t o  the  exact eigenvalues.* 

If the  vibrat ion mode i s  assumed t o  be of the  form 

then t h i s  technique leads t o  the  l i nea r  system 

N 

n i l  
C %pmn = o (m = 1, 2, ... , N) 

(4.10) 

(4.11) 

* No such statement can be made here, of course, as long as t h e  s t a t i c  
problem i tself  has been solved only approximately. 
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These equations have a non-tr ivial  solution f o r  &n if 

determinant ipmnl = o 

from which p i s  computed. 

(4.14) 

I n  the  present analysis four terms have been used i n  the  

approximating series, namely, 

w l  = s i n  E s i n  

2 = s i n  E s i n  3 2  

a '6 

a b 

w 3  = s i n  *RX s i n  ~ry 
a b 

(4.15) 

The squares of t he  frequencies of t h e  various modes are p lo t ted  as 

functions of t h e  load parameter 

chart  

A, with t h e  results shown i n  the  

To determine the  s t a b i l i t y  and i n s t a b i l i t y  of t h e  buckling 

modes it is  necessary t o  examine the second var ia t ion  of t he  po ten t i a l  

energy V. The la t ter  i s  given i n  Equation (4.3), which, f o r  convenience, 

may be w r i t t e n  symbolically 

v = ub(w,w) + urn (w) (4 - ; A*. (ww) (4.16) 

The following expansions iden t i t i e s  are a l s o  useful :  

%(W+W) = u,(w,w) + 2q)(w,w)  + ub(w,w) 

rr,(w+w> = rr, (w) (w) + 4rr, (w) (w) 
+ 2b (w) (w) + 4um (ww) (ww) 

+ 4um (&) (w) + v, (w) (w) 

(4.17) 
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A configuration i s  i n  equilibrium if t h e  poten t ia l  energy assumes a 

s t a t iona ry  value. By standard methods t h i s  leads t o  Equation (2.6) 

i n  t h e  present problem. 

which determines the  s t a b i l i t y  o r  i n s t a b i l i t y  of t h e  buckled state, 

takes  t h e  form 

The second var ia t ion  of t h e  po ten t i a l  energy, 

(4.18) 

A f t e r  some integrat ions by pa r t s  and upon appl icat ion of t h e  boundary 

conditions, t h i s  leads t o  

(4.20) 

It may be of i n t e re s t  t o  note t h a t  in  view of Equation (2.10) t h e  eigen- 

values 

vided the  function v(x,y) 

v ibra t ion  mode w,(x,y). Since posi t ive values f o r  a l l  pn have pre- 

viously been ident i f ied  with s t a b i l i t y  t h i s  confirms t h e  familiar con- 

nection between s t a b i l i t y  and the  posit ive def ini teness  of t h e  second 

va r i a t ion  of t he  po ten t i a l  energy. 

pn are equal t o  the  s ta t ionary values of t h i s  expression pro- 

i s  chosen t o  be the  associated normalized 

It i s  reca l led  t h a t  A i s  t h e  r a t i o  of t h e  edge displacement 

t o  t h a t  required f o r  t he  i n i t i a l  i n s t ab i l i t y .  Now l e t  y be t h e  r a t i o  

of t h e  edge compressive force caused by the  prescribed edge displacement 

t o  t h a t  required f o r  i n i t i a l  i n s t ab i l i t y .  Then y is  related t o  A 
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(4.21) 

i n  which t h e  in t eg ra l s  a r e  along a loaded edge. 

of ten characterized by i ts  y versus X curve, i .e. ,  t he  load-shortening 

curve. The in te rsec t ion  of t h e  load-shortening curve of one m o d e  (say 

the symmetric m o d e  which corresponds t o  the lowest buckling load) w i t h  

t h e  load-shortening curve of another mode ( the  antisymmetric mode which 

corresponds t o  the  next lowest buckling load) usual ly  indicates  a possi-  

b i l i t y  of the change of buckling modes. Jus t  when and where t h i s  t y p e  

of secondary buckling takes place i s  conjectural .  

consider it reasonable t o  apply the  equal energy c r i t e r i o n  t o  determine 

the change of buckling modes. 

t o  t h e  secondary buckling m o d e  when 

The buckled state i s  

Various a ~ t h o r s ( * 5 , ~ ~ )  

Hence, the primary buckling mode  may change 

V I  = v2 (4.22) 

i n  which VI 

m o d e  and V2 t h a t  associated w i t h  the secondary buckling m o d e .  

is  the  po ten t i a l  energy associated w i t h  the  primary buckling 

In  the  present ana lys i s ,  the v ibra t ion  method and equal energy 

c r i t e r i o n  a r e  used t o  determine t h e  s t a b i l i t y  of the buckling modes and 

changes of buckling m o d e s .  

t he  s t a b i l i t y  and change of buckling modes of a simply supported rectangu- 

lar p l a t e  subJected t o  uniaxial-edge compression is  a l s o  investigated by 

the present method. The details of t h i s  ana lys i s  are presented i n  

Appendix B. 

I n  addition t o  the  problem s t a t ed  i n  Chapter 11, 



CHAPTER V 

RESULTS AND DISCUSSION 

Charts showing the  frequencies of v ibra t ion  and the load- 

shortening curves are given i n  nondimensional quan t i t i e s  p ' ,  X '  and 

A", i n  which p '  = p/4(8) f l 4 D  E p ,  X' = X/2(8)2 and A" = X/4(n)2 E . 
All calculat ions are based upon the  value of Poisson's r a t i o  

a 
v = .30. 

Figure l a  shows the  re la t ion  between p '  and A' f o r  small 

f o r  a square p l a t e  subjected t o  plane hydrostatic pres- values of A '  

sure. 

verges s a t i s f a c t o r i l y  f o r  

i .e.,  p = 1, q = 1 and p = 2, q =1, about t h e  lowest buckling con- 

f igura t ion  (m = n = 1) are plot ted.  

increases p rac t i ca l ly  l i n e a r l y  with X '  

s t a b i l i t y  f o r  both the  symmetric (p  = q = 1) and antisymmetric (p = 2, 

q = 1) vibra t ion  modes. 

The results a r e  obtained f romthe  perturbation se r i e s  which con- 

X '  < 16. Only t h e  two lowest v ibra t ion  m o d e s ,  

It is in t e re s t ing  t o  note t h a t  p '  

i n  the  v i c i n i t y  of i n i t i a l  in -  

The frequency of the  symmetric v ibra t ion  m o d e  i s  s t rongly 

a f fec ted  by the  increase of A ' ,  t he  r a t e  of increase of p '  a f t e r  

buckling being twice as much as the ra te  of decrease before buckling. 

For example, w i t h  A '  = 4 and p '  = 5.8, the  "s t i f fness"  of the  p l a t e  

has increased t o  2.41 times t h a t  of t h e  unbuckled s t a t e  while the  maxi- 

mum def lec t ion  at  the center of t h e  plate i s  only 1.5 h. This rapid 

increase i n  t h e  s t i f f n e s s  a f t e r  buckling i s  important i n  f l u t t e r  analysis .  

I n  general ,  t he  v ibra t ion  mode associated w i t h  the  i n i t i a l  buckling mode, 

tha t  is ,  p = m and q = n, i s  the  mode af fec ted  most s t rongly by the  

increase of X'. For fu r the r  increase of X' the frequency of t h e  

symmetric vibrat ion mode becomes higher than t h a t  of t he  antisymmetric 
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mode. This i s  not unreasonable since t h e  antisymmetric vibrat ion i s  

primarily inextensional while t he  symmetric vibrat ion i s  primarily 

extensional. 

The results of t h e  same problem as shown i n  Figure l a  but  f o r  

a l a rge r  range of values of A '  are shown i n  Figure lb .  The so l id  

l i n e s  represent t h e  perturbation solution up t o  A '  = 50; however, t he  

results become less reliable s ince,  f o r  A '  > 20, t he  perturbation 

series f o r  t h e  symmetric vibrat ion mode converges ra ther  poorly. I n  

cont ras t ,  f o r  t h e  antisymmetric vibrat ion mode it s t i l l  converges 

s a t i s f a c t o r i l y  f o r  values of A '  up t o  40.  The dashed l i n e s  represent 

t h e  r e s u l t s  of Equation (4.14) when the  approximating series takes  the  

form of Equation (4.15). It is  noted t h a t  after a fur ther  increase of 

A ' ,  t h e  frequency of t h e  symmetric vibration mode increases less rapidly 

and eventually becomes again less than t h a t  of t he  antisymmetric vibra- 

t i o n  m o d e .  This is  due t o  the  f a c t  t ha t  f o r  la rge  values of A '  two 

nodal l i n e s  appear i n  the  symmetric vibration m o d e ,  which therefore  be- 

comes more nearly inextensional. Figure 2 shows the  shapes of t he  sym- 

metric and antisymmetric vibrat ion modes f o r  various values of A ' .  

Figures 3a and 3b show the  r e l a t ion  between 7 and A '  f o r  

the  same case of a square p l a t e  subjected t o  plane hydrostatic pressure. 

The per turbat ion results are shown i n  Figure 3a, the energy method re- 

s u l t s  i n  Figure 3b. "he rate of increase of 7 after buckling is  only 

one fourth as much as t h a t  before buckling (as against  one ha l f  i n  t h e  

case of un iax ia l  edge compression). 

Figure 4 shows the  re la t ions  between p' and A '  f o r  rectangu- 

lar  p l a t e s  of various aspect r a t io s .  The p l a t e s  are assumed t o  be forced 
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20 ' x 0 4 0 12 16 

m=n= I , V=0.30 

Figure la. Nondimensional Frequency Squared-Load 
Curves f o r  Square P la t e  under Hydro- 
s t a t i c  Pressure. 
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Figure lb. Nondimensional Frequency Squared-Load Curves 
f o r  Square P la te  under Hydrostatic Pressure 
(same as Figure la but extended range). 
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Figure 2. Modes of Vibration f o r  Square Pla te  under 
Hydrostatic Pressure (only half p l a t e  i s  shown). 
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m=2,n=i, p = q = l  

~ i g u r e  4. mndimensional mguency Squared-bad Curves 
for Rectangular Plate under Hydrostatic Pressure 
Second Buckling Mode. 
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i n t o  t h e  second buckling mode (m = 2 

of a r t i f i c i a l  kinematic constraints  which, however, do not r e s t r i c t  the 

freedom of dynamic vibratory motion. For m = 2, n = 1, the  vibrat ion 

mode associated w i t h  negative p' corresponds t o  p = q = 1. For a l l  

other  m o d e s ,  p '  i s  posi t ive i n  the v i c i n i t y  of t h e  i n i t i a l  i n s t a b i l i t y  

and up t o  values of which are o f  i n t e r e s t  t o  us; hence they are not 

considered here. 

and n = 1) through the  appl icat ion 

A '  

The so l id ,  dashed and dashed-dotted curves represent p '  

versus A'  f o r  the p = q = 1 vibrat ion m o d e  of p l a t e s  of aspect r a t i o  

1, 2 and 2.45, respectively.  It is noted t h a t  p '  remains negative 

f o r  a l l  values of A '  > 1 f o r  aspect r a t i o s  of 1 and 2,  respect ively,  

a t  least within the l i m i t  of t h e  truncated series.* For an aspect r a t i o  

of 2.45 p1 becomes posi t ive a t  A '  = 7.70; moreover, the truncated series 

shows sa t i s f ac to ry  convergence f o r  the range of values considered. This 

means t h a t  the m ZT 2, n = 1 buckling configuration w i l l  become stable 

even aft .er  t he  removal of t he  a r t i f ic ia l  kinematic constraints  f o r  s u f f i -  

c i en t ly  la rge  values of A ' .  I n  th i s  case secondary buckling from t h e  

fundamental mode in to  the second mode may occur; i n  contrast  such secondary 

buckling i s  ruled out f o r  a square plate  under hydrostat ic  pressure. 

Figures 5 ,  6 and 7 show t h e  load-shortening curves of t he  

lowest buckling configurations (m = 1, n = 1 

pla te s  considered i n  Figure 4. 

displacement i n  the  antisymmetric buckling configuration (m = 2, n = 1) 

increases w i t h  decreasing load when 

and m = 2, n = 1) f o r  t h e  

For a square p l a t e  (Figure 5 )  t h e  edge 

h' > 7.0, confirming the  previous 

Slow convergence raises doubts as t o  t h e  r e l i a b i l i t y  of t h i s  statement 
f o r  a/b = 2. 

* 
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conclusion that the antisymmetric buckling configuration for a square plate 

remains unstable. 

ratio 2 and 2.45, respectively. 

equilibrium configuration (not shown) becomes possible at the value of 

A '  at which the antisymmetric buckling configuration becomes stable. This 

secondary bifurcation and the unstable character of the new configuration 

can be shown by considering the first and second variations of the potential 

energy. The value of X' associated with equal potential energies for the 

two stable buckled states is also indicated in Figure 7. 

Figures 6 and 7 treat the rectangular plates of aspect 

It is interesting to note that a new 

The possibility of secondary buckling from the fundamental mode 

into a yet higher mode (m = n = 2) is treated in Figure 8, which shows 

the p' versus k' curves of a square plate subjected to plane hydro- 

static pressure after the plate has been forced to buckle into that mode. 

Only the two vibration modes p = q = 1 and p = 2, q = 1 produce nega- 

tive values of p'. It is noted that these values remain negative; hence 

for a square plate the buckling configuration m = n = 2 is also unstable. 

This is confirmed by the load-shortening curves of the m = n = 1 and 

m = n = 2 buckling configurations shown in Figure 5. Since the two 

curves do not intersect the possibility of snap-through from the symmetric 

(m = n = 1) buckling configuration into the antisymmetric (m = n = 2) 

buckling configuration is ruled out. 

The behavior of plates subjected to uniaxial edge compression 

is radically different. 

and is corroborated in Figures 9 and 10. 

plate exhibits a stable antisymmetric (m = 2, n = 1) equilibrium configu- 

ration when A "  becomes sufficiently large. This change-over from 

This has been treated by Stein(18) and others 

Zn this case even a square 
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U = 0.30 

Figure 8. Hondimansiod Frequency Squared-bad 
Curves for Square Plate under Hydro- 
static M S S U ~ ~  m = n = 2 Buckling Made. 
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Figure 9. Square Plate - Uniaxial Mge Compression. 
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(a) Nondimensional Frequency Squared-Load Curve 
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(b) Nondimensional Load-Shortening Curves 

5 

Figure 10. Rectangular Plate - Uniaxial Edge Compression a/b = 2. 
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i n s t a b i l i t y  t o  s t a b i l i t y  i s  again accompanied by the  emergence of a new 

unstable configuration (again not indicated i n  the  figures). 

noted a l s o  t h a t  t he  values of A" 

t o  secondary buckling) as well as the values of 

equal po ten t i a l  energies a r e  very much smaller than i n  the  case of hydro- 

s t a t i c  pressure. 

t e s t  r e su l t s .  

It i s  

so defined (represent ing lower bounds 

A" associated with 

This i s  i n  good qual i ta t ive  agreement with reported 



CHAPTER VI 

CONCLUSIONS 

It has been demonstrated that perturbation techniques can be 

used e f fec t ive ly  t o  aqalyze the  dynamic behavior of rectangular p la tes  

a f t e r  they have buckled. The ensuing series show sa t i s fac tory  conver- 

gence f o r  a technical ly  s ignif icant  range of the load parameter. 

Natural frequencies of vibration have been shown t o  be ex- 

tremely sens i t ive  t o  buckling amplitudes, displaying the  most pronounced 

increase i n  connection with the  symmetric vibratory mode. For suffi- 

c i en t ly  large load parameters t h i s  m o d e ,  which is primarily extensional, 

ceases t o  be associated with the longest period of vibration; however, 

it becomes more nearly inextensional as buckling proceeds and may there- 

fore  again re turn  t o  i t s  previous fundamental position. 

The s t a b i l i t y  of higher buckling configurations has been in- 

vestigated by studying the  r e a l  or imaginary character of the  frequencies 

of vibrat ion about these configurations. The re su l t s  indicate t ha t  all 

pla tes  under uniaxial  edge compression, and rectangular p la tes  of suffi- 

c ien t ly  large aspect r a t i o  under hydrostatic edge pressure, may eventually 

exhibi t  s tab le  secondary buckling modes. The concomitant load parameters 

represent lower bounds t o  "secondary buckling loads" which s igni fy  the 

poss ib i l i t y  of a sudden snap-through from one buckling configuration in to  

another. This phenomenon had been widely observed before; the present 

calculations tend t o  conform w i t h  previously reported experimental resu l t s .  
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(b)  Additional Membrane Stresses  

i n  which 
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(c) had Parameter 

in which 

(d) Additional Membrane Displacements 

in which 
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(2) Dynamic Functions 

(A) Static Buckling Configuration m 7 1 and n = 1 

(i) Vibration Mode p = 1 and q = 1 

(a) Deflection 

(b) Membrane Stresses 

in which 
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( c )  mequency Parameter 

(ii) Vibration Mode p = 2 and q = 1 
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(b) Membrane Stresses 

i n  which 
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(e)  Frequency Parameter 
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(B) S t a t i c  Buckling Configuration m = 2 and n = 1 

( i) Vibration Mode p = 1 and q = 1 

(a)  Deflection 
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(b) Membrane Stresses 

in which 
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w i t h  



e 



with 
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( c ) Frequency Parameter 
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(2) 
Pq'l 

(3) General Algebraic Expressions for p ( O )  and 
P9 
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APPENDIX B 

VIBRATIONS OF A SIMPLY SUPPORTED REXTANGULAR 
PLATE UNDER UNIAXIAL EDGE COMPRESSION 

This problem concerns i t s e l f  with the  vibrat ions of a simply 

supported rectangular p l a t e  which i s  subjected t o  prescribed t o t a l  edge 

t h r u s t s  a t  x = 0 and x = a. The d i f f e r e n t i a l  equation governing 

the  s t a t i c  def lect ion of t he  p l a t e  i s  again 

i n  which 

tYj = [-; 0) 
T '  ij = 2 1 (.,iw,j) 

The operator (B.3) i s  ident i f ied  w i t h  t h e  same s e t  of equations as i n  

the  main body of t he  paper, except f o r  a change i n  the  boundary conditions. 

That i s ,  instead of U'(a,y) and V'(x,b) vanishing, t h e  new boundary 

conditions read 

U'(a,y) = kl (B. 4) 

V'(x,b) = k2 (B. 5) 

i n  which kl and k2 are determined from 

a 
T '  (x,b)dx = 0 

O Y Y  

Alternately,  t he  previous set of boundary conditions may be used and two 

uniform addi t ional  t e n s i l e  s t resses ,  one i n  the  x d i rec t ion  and t h e  
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other  i n  the 

EQuations (€3.6) and (B.7). 

same d i f f e r e n t i a l  equation and same boundary conditions as i n  the  

main body of t h e  paper except t$ takes t h e  form of Equation (B.2). 

The method of solut ion f o r  t h i s  problem is the  same perturbation 

method presented i n  Chapter 1 x 1  and hence it is  not repeated here. 

y d i r ec t ion ,  may be superimposed s o  as t o  s a t i s f y  

I n  the  dynamic case, t h i s  problem has t he  

The general algebraic expressions f o r  t he  s t a t i c  def lec t ion ,  

t he  s t a t i c  addi t iona l  membrane s t resses ,  the  load parameter and the 

s t a t i c  addi t iona l  membrane displacements are as follows: 

= c2T(') + c % " ( ~ )  + . . . . 
Ti j i j  i j  

A = A o  + €21 + E 4 A + .... (B. 10) 

+ .... (B. 11) 

+ .... (B. 12) 

i n  which 

W(') = h s i n  % x s i n  nn - y 
a b 
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mx 4 
4nn 

Y 2mn x cos - 2nn 
2 B ~ C O S  - 

a b 
cos - 2mn x cos - 

a b 

mn 4 

[(-I + 3 
4mn 2nn Bqcos - x cos - y) 4 ( 7 )  - + 

2mn 2 nn 2 2 a b 
a 

4nx Y) * 
2mn s i n  - x s i n  - 
a b 
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" h  
a 

I 

Note t h a t  A now becomes t h e  r a t i o  f t h e  pres 

t h a t  required f o r  t h e  i n i t i a l  i n s t ab i l i t y .  L e t  

edge displacement caused by t h e  prescribed edge 

r ibed compression t o  

f be t h e  r a t i o  of t h e  

compression t o  t h a t  

required f o r  t h e  i n i t i a l  i n s t ab i l i t y ;  then f i s  r e l a t ed  t o  h by 
h 

The A versus f curve i s  now t h e  load-shortening curve. The lowest 

buckling m o d e  i s  given by m = a/b and n = 1. 

The general algebraic expressions f o r  t he  def lec t ion  and t h e  

frequency parameter of t he  vibrat ion mode p = q = 1 about t h e  buckled 

configuration m = n = 1 a r e  
- 

w = h s i n  5 x s i n  ' y + c23h(B14sin r[ x s i n  * y + B14sin 2 x s i n  a y)  a 6 a b a 6 

+ .... 
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i n  which 

The general expressions f o r  t he  frequency parameter of t he  v ibra t ion  

modes p =1, q = 1  and p = 2, q = 1  about the  buckled configuration 

m = 2, n = 1 a r e  
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i n  which 

c 3(1-v2) 
%8 = 

4[528($)' - 6(@"] [(g)2+(9)212 b 

The general  expressions f o r  t he  frequency parameter of t h e  v ibra t ion  

modes p = 1  q = l , p = 2 q = l , p = 2 q = 2  and p = 3 q = 1  about 

the buckled configuration m = 3, n = l  a r e  

+ .... 



4 2 Eh2 {-36(E)4 - k(L) 4 
a 9 b  1 6  a 9 b  

22p = 3-20(2) + 24(2)2(2)2 - -(h) ] + E 

+ .... 

4 4  4 
Eh2[(%) +(:) 1 - e4 3d[(2) B34 + (t)454] + .. . . 
- B a  4 a  31’1 = E 

i n  which 

4 243(1-v2) (g) 
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For the cases of a = b and a = 2b results are shown in Figures 9 

and 10. 
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